May-24-0392

MA-401 (Optimization and Calculus of Variations)
(Common for B.Tech. all Branches)
B.Tech. 4th (CBCS)

Time: 3 Hours

Max. Marks: 60

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt Five Questions in all, selecting one question each from sections A, B, C and D. Section E is compulsory.

SECTION - A

1. (a) Minimize Z=20x+10y

Subject to constraints {x+2y≤40, 3x+y≥30

by Graphical Method.

(5)

- (b) Explain the following concept in the context of Linear Programming Problem:
 - (a) Convex Set.
 - (b) Objective function.
 - (c) Feasible solution.

(5)

 Use Simplex Method to solve the following Linear Programming Problem

Maximize Z=3x₁+2x₂

Subject to constraints -x1+2x2<4

$$3x_1 + 2x_2 \le 14$$

$$x_1 - x_2 \le 3, x_1, x_2 \ge 0$$
 (10)

2

SECTION - B

 Find the Optimal solution of the following Transportation Problem. (10)

		2000		_	0 1	
	D	D	D	D	Supply	
А	3	1	7	4	250	
В	2	6	5	9	350 400	
С	8	3	3	2		
Demand	200	300	350	150		

 Solve the following Linear Programming Problem by the method of Dynamic Programming.

Max. $Z=8x_1+7x_2$

Subject to constraints 2x₁+x₂≤8

$$5x_1+2x_2 \le 15$$
 and $x_1, x_2 \ge 0$ (10)

SECTION - C

A project consists of the following activities with time estimates noted against each:

	Activity	1-2	1-3	2-3	2-5	3-4	3-6	4-5	4-6	5-6	6-7
1											14

- (a) Draw a diagram of Project.
- (b) Determine Critical Path.
- (c) Find total float for each activity.
- (d) Determine project duration.

(10)

[P.T.O.]

MA-401

Min. $Z=2x_1^2+2x_2^2+2x_3^2-24x_1-8x_2-12x_3$

Subject to $x_1+x_2+x_3=11$

and $x_1, x_2, x_3 \ge 0$ (10)

SECTION - D

- 7. (a) Find the Extremal of the functional $\int_0^{\pi/2} (y'^2 y^2 + 2xy) dx$ that satisfy the boundary conditions y(0)=0, $y(\pi/2)=0$ (5)
 - (b) Find the curve passing through the points (x_1, y_1) and (x2, y2) which when rotated about the x-axis gives minimum surface area.
- Find the plane curve of fixed length having maximum area. (a)
 - Find the extremal of the functional $\int_0^2 y'^2 dx$ under the constraint $\int_0^2 y \, dx = 1$ given y(0)=0 and y(2)=1.

SECTION - E (Compulsory)

- 9. Attempt all the questions:
 - Write Euler Lagrange Equation. (a)
 - Define constraints in L.L.P. (b)
 - (c) What is basic feasible solution for T.P?
 - Write the main features of Critical Path.
 - (e) Write about PERT in short.

MA-401

- Define Degeneracy of transportation problem.
- Define Slack variable in the context of liner programming
- (h) Define the Calculus of variables.
- (i) Define Artificial Variable and Surplus Variable.
- Explain the meaning of Duality in Linear Programming (j) problem. $(10 \times 2 = 20)$