Dec.-23-0447

EE-505 (Electromagnetic Field Theory) B.Tech. 5th (CBCS)

Time: 3 Hours Max. Marks: 60

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all, selecting one question each from Section A, B, C and D. All parts of Section E are compulsory.

SECTION - A

- (a) Two point charges 4 μC and 5 μC are located at (2,-1, 3) and (0, 4, -2), respectively. Find the potential at (1, 0, 1) assuming zero potential at infinity.
 - (b) For a vector field A, show explicitly that $\nabla \cdot \nabla X A = 0$; that is, the divergence of the curl of any vector field is zero. (5)
- 2. State and proof gauss law and explain two applications of gauss law with proper figure and mathematical expression. (10)

SECTION - B

- 3. Explain Ampere's circuit law and discuss the application Infinite Line Current with proper figure and derivation. (10)
- 4. (a) Explain Magnetic Vector Potential. (5)
 - (b) Define and explain Biot -Savart's law with proper figure and mathematical expression. (5)

SECTION - C

(a) Derive the expression for the attenuation constant, phase constant and intrinsic impedance for a uniform plane wave in a good conductor.

2

EE-505

- (b) In a lossless medium for which $\eta = 60\pi$, $\mu_r = 1$, and H=-0.1 $\cos(\omega t$ -z) a_x +0.5 $\sin(\omega t$ -z) a_y A/m, calculate ϵ_r , ω , and E. (5)
- 6. Discuss Maxwell's Field equation in static Fields and Time varying fields with their physical Interpretations. (10)

SECTION - D

- 7. (a) Explain the Poynting vector Theorem and its significance. (7)
 - (b) Explain characteristic impedance of a transmission line.(3)
- 8. Derive the expression for Input Impedance and SWR of a transmission line. (10)

SECTION - E (Compulsory)-

- 9. (a) Define Faraday induction Law.
 - (b) What is the divergence of curl of a vector?
 - (c) Define Coulomb's law
 - (d) What is meant by displacement density?
 - (e) Define the terms Reflection and Refraction.
 - (f) Write the Maxwell's equations for free space in point form.
 - (g) Define characteristic impedance.
 - (h) Define voltage reflection coefficient.
 - (i) Define Smith chart.
 - (j) Define standing waves.

 $(10 \times 2 = 20)$