EE-401

Dec.-23-0410 EE-401 (Electrical Machine-II) B.Tech. 4th (CBCS)

Time: 3 Hours

Max. Marks: 60

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt Five questions in all, selecting One question each from section A, B, C & D. Section E is compulsory. Use of non-programmable calculator is allowed. Assume any missing data.

SECTION - A

- (a) A 3-phase induction motor is wound for 6 poles and is supplied for 50 Hz system. Calculate: (i) Rotor speed when slip is 5% (ii) Rotor frequency when rotor runs at 800 r.p.m.
 - (b) Explain how the double cage induction motor develops high torque at starting and give good running performance.
 (5)
- Explain the no load and blocked rotor test on a 3-phase induction motor. How are the parameters of equivalent circuit determined from the tests?

SECTION - B

A 240 V, 50 Hz, 4 pole single phase induction motor has the following equivalent circuit impedances:

R1m=11.4 Ω , R2'=14.5 Ω

X1m= 13.8Ω, X2' = 14.4Ωl, Xm = 270Ω

Mechanical and core losses=32 W

Calculate a) Total Series impedance, b) Power Factor, c) Output Power and d) Efficiency Here, R1m=Resistance of Main stator winding, X1m= Leakage reactance of main stator winding, R2'=Standstill rotor resistance referred to the main stator winding, X2'=Standstill rotor leakage reactance referred to the main stator winding, Xm=Magnetizing reactance. (10)

- 4. Explain the working principle with neat sketches of:
 - Split phase single phase induction motor.
 - b. Capacitor start single phase induction motor. (2×5=10)

SECTION - C

- Explain the terms coil-span factor and distribution factor in connection with alternator armature windings and deduce the emf equation of an alternator incorporating the effects of these factors.
- Describe the construction of a three phase synchronous alternator. What are the different types of rotor constructions, explain with diagrams? (10)

SECTION - D

- Explain the effect of varying excitation on armature current and power factor in a synchronous motor. (10)
- 8. Why is synchronous motor not self-starting? What methods are generally used to start the synchronous motors? (10)

SECTION - E (Compulsory)

- Explain the following:
 - Define the term voltage regulation of synchronous generator.

- (ii) What are the conditions necessary for paralleling alternator?
- (iii) What is a synchronous compensator?
- (iv) What are the causes of hunting in synchronous motors?
- Briefly explain armature reaction in synchronous machines.
- (vi) List the methods for starting of three phase squirrel cage induction motor. Which type of starter is used for both small and medium sized motors?
- (vii) Explain the condition for obtaining maximum torque of three phase induction motor.
- (viii) What is meant by slip energy recovery?
- (ix) What is a forward and backward rotating fields of a single phase induction motors?
- (x) Compare a single phase induction motor with a 3 phase induction motor. (10×2=20)