
VAISHNO COLLEGE OF ENGINEERING

Affliated to HPTU, Hamirpur and approved by AICTE

DAA

Lab Manual

CSPC-413P (CPCS Syllabus)

Department of Computer Science Engineering

Vill Thapkour, PO Bhardoya, Tehsil Indora,Distt. Kangra (HP)-176403

Contact: 094183-18394, Web: www.vaishno.edu.in

Vision of Institute

To emerge as an institute of eminence in the fields of engineering, technology and management

in serving the industry and the nation by empowering students with a high degree of technical

managerial and practical competence.

Mission of Institute

M1 To strengthen the theoretical, practical and ethical dimensions of the learning process by

fostering a cultural of research and innovation among faculty members and students.

M2 To encourage long term interaction between academia and industry through the involvement

of industry for hands on implementation of the curriculum.

M3 To strengthen and molding students in professional ethical, social and environmental

dimensions by encouraging participation in co-curricular extracurricular and CSR activities.

Vision of the Department

To emerge as a department of eminence in computer science and engineering in serving the

industry and the nation by empowering students with high degree of technical and practical

competence.

Mission of the department

M1 To strengthen the theoretical and practical aspects of learning process by strongly

encouraging a

 computer cultural of research, innovation and hands on learning in computer science and

engineering

M2 To encourage long term interaction between the department and IT industry, through the involvement of

 IT industry for hands on implementation of course curriculum.

M3 To widen the awareness of students in professional, ethical, social and environmental dimensions by

encouraging their participation in co-curricular extracurricular and CSR activities.

Program Educational Objectives (PEOs) of the department

PEO 1: Engage in successful careers in industry, academia, and public service, by applying the

acquired knowledge of Science, Mathematics and Engineering, providing technical leadership

for their business, profession and community

PEO 2: Establish themselves as entrepreneur, work in research and development organization

and pursue higher education

PEO 3: Exhibit commitment and engage in lifelong learning for enhancing their professional

and personal capabilities.

PROGRAM OUTCOMES

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

PO2: Problem analysis: Identify, formulate, research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex engineering

activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able tocomprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

PO 12: Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcome (PSOs)

PSO1: Apply knowledge of mathematics, engineering sciences and multidisciplinary knowledge

to the solution of computer science engineering problems.

PSO2: Apply research-based knowledge, appropriate techniques, IT tools to complex computer

science engineering problems including design, analysis, interpretation of data, and synthesis of

the information to provide valid conclusions.

PSO3: Apply ethical principles engineering profession and recognize the need of independent

and lifelong learning for professional development and personnel growth.

Following is the list of experiments out of which minimum 08

experiments must be performed in the lab. The additional experiments

may be performed by the respective in situation depending on the in

restructure available.

List of experiments:

1. Write a program to perform Insetion sort for any given list of numbers.

2. Write a program to perform Quick Sort for the given list of integer values.

3. Write a program to find Maximum and Minimum of the given set of integer values.

4. Write a Program to perform Merge Sort on the given two lists of integer values.

5. Write a Program to perform Binary Search for a given set

integer values recursively and non-recursively.

6. Write a program to find solution for knapsack problem using greedy method.

7. Write a program to find minimum cost spanning tree using Prim's Algorithm.

8. Write a program to find minimum cost spanning tree using Kruskal's Algo1ithm.

9. Write a program to perform Single source shortest path problem for a given graph.

10. Write a program to find solution for job sequencing with deadlines problem.

11. Write a program for all pairs shortest path problem.

12. Write a program to solve N-QUEENS problem.

CSPC-413PDAALab

Teaching

Scheme
Credit Marks Distribution

Duration of End

Semester

Examination
L T p C Internal Assessment End Semester Examination Total

0 0 2 1
MaximumMarks:30 MaximumMarks:20 so

2Hours
MinimumMarks:12 MinimumMarks:08 20

GENERAL GUIDELINES AND SAFETY INSTRUCTIONS

1. You may use the computers in the lab only when a teacher is present.

2. Please place your bags at the front of the lab.

3. Do not eat or drink in the lab.

4. Keep the lab clean and neat at all times.

5. Use only the computer you are assigned to.

6. Report any hardware fault immediately to your teacher. Never attempt to dismantle the

different parts of the computer.

7. Each student must log in to his/her account. No sharing of accounts is permitted.

8. The computers are for your academic use. Playing computer games for entertainment is

strictly not allowed.

9. Shut down the computer properly after use.

10. Do not charge your personal mobile devices in the lab.

Cleanliness

 Keep your workspace clean and free of clutter

 Don't eat or drink in the lab

 Don't litter

 Don't remove cables or items from the lab

Fire safety

 Have a fire extinguisher and first-aid kit available

 Follow fire safety guidelines

 Be aware of the possibility of an accidental fire

 Know how to react to a fire

 Have a planned fire escape route

Eye and body safety

 Avoid eye fatigue by blinking often or closing your eyes for a few minutes

 Sit straight and in a comfortable posture

 Spread your fingers apart or rotate your wrists at regular intervals

 Wear proper lab attire

 Practice good hygiene

Other safety guidelines

 Don't spill liquids on the computer

 Don't touch hot or high voltage areas of printers

 Don't open a power supply or CRT monitor

 Don't tamper with wires or network cables

 Don't use illegal software

 Don't attempt to compromise network security

Experiment No: 1

AIM: Write a program to perform Insertion sort for any given list of numbers.

SOFTWARE/APPARATUSREQUIRED:- Turbo C, Personal Computer

Program: #include <math.h>

#include <stdio.h>

void insertionSort(int arr[], int N) {

 // Starting from the second element

 for (int i = 1; i < N; i++) {

 int key = arr[i];

 int j = i - 1;

 // Move elements of arr[0..i-1], that are

 // greater than key, to one position to

 // the right of their current position

 while (j >= 0 && arr[j] > key) {

 arr[j + 1] = arr[j];

 j = j - 1;

 }

 // Move the key to its correct position

 arr[j + 1] = key;

 }

}

int main() {

 int arr[] = { 12, 11, 13, 5, 6 };

 int N = sizeof(arr) / sizeof(arr[0]);

 printf("Unsorted array: ");

 for (int i = 0; i < N; i++) {

 printf("%d ", arr[i]);

 }

 printf("\n");

 // Calling insertion sort on array arr

 insertionSort(arr, N);

 printf("Sorted array: ");

 for (int i = 0; i < N; i++) {

 printf("%d ", arr[i]);

 }

 printf("\n");

 return 0;

}

Out Put:

Unsorted array: 12 11 13 5 6

Sorted array: 5 6 11 12 13

Experiment No: 2

AIM: Write a program to perform Quick Sort for the given list of integer values

SOFTWARE/APPARATUSREQUIRED:- Turbo C, Personal Computer

Program:

// C Program to sort an array using qsort() function in C

#include <stdio.h>

#include <stdlib.h>

// If a should be placed before b, compare function should

// return positive value, if it should be placed after b,

// it should return negative value. Returns 0 otherwise

int compare(const void* a, const void* b) {

 return (*(int*)a - *(int*)b);

}

int main() {

 int arr[] = { 4, 2, 5, 3, 1 };

 int n = sizeof(arr) / sizeof(arr[0]);

 // Sorting arr using inbuilt quicksort method

 qsort(arr, n, sizeof(int), compare);

 for (int i = 0; i < n; i++)

 printf("%d ", arr[i]);

 return 0;

}

Out Put:

1 2 3 4 5

Experiment No: 3

AIM: Write a program to find Maximum and Minimum of the given set of integer values.
SOFTWARE/APPARATUSREQUIRED:- Turbo C, Personal Computer

Program:

// Function to find maximum and minimum in an array

void findMinMax(int arr[], int n, int *max, int *min) {

 // Assuming first element as minimum and maximum

 *max = arr[0];

 *min = arr[0];

 for (int i = 1; i < n; i++) {

 // Update max if arr[i] is larger

 if (arr[i] > *max)

 *max = arr[i];

 // Update min if arr[i] is smaller

 if (arr[i] < *min)

 *min = arr[i];

 }

}

int main() {

 int arr[] = {5, 2, 7, 6};

 int n = sizeof(arr) / sizeof(arr[0]);

 int max, min;

 // Finding minimum and maximum values in arr

 findMinMax(arr, n, &max, &min);

 printf("%d\n", max);

 printf("%d\n", min);

 return 0;

}

Out Put :

7

2

Experiment No: 4

AIM: Write a Program to perform Merge Sort on the given two lists of integer values.

SOFTWARE/APPARATUSREQUIRED:- Turbo C, Personal Computer

Program:

// C program for the implementation of merge sort

#include <stdio.h>

#include <stdlib.h>

// Merges two subarrays of arr[].

// First subarray is arr[left..mid]

// Second subarray is arr[mid+1..right]

void merge(int arr[], int left, int mid, int right) {

 int i, j, k;

 int n1 = mid - left + 1;

 int n2 = right - mid;

 // Create temporary arrays

 int leftArr[n1], rightArr[n2];

 // Copy data to temporary arrays

 for (i = 0; i < n1; i++)

 leftArr[i] = arr[left + i];

 for (j = 0; j < n2; j++)

 rightArr[j] = arr[mid + 1 + j];

 // Merge the temporary arrays back into arr[left..right]

 i = 0;

 j = 0;

 k = left;

 while (i < n1 && j < n2) {

 if (leftArr[i] <= rightArr[j]) {

 arr[k] = leftArr[i];

 i++;

 }

 else {

 arr[k] = rightArr[j];

 j++;

 }

 k++;

 }

 // Copy the remaining elements of leftArr[], if any

 while (i < n1) {

 arr[k] = leftArr[i];

 i++;

 k++;

 }

 // Copy the remaining elements of rightArr[], if any

 while (j < n2) {

 arr[k] = rightArr[j];

 j++;

 k++;

 }

}

// The subarray to be sorted is in the index range [left-right]

void mergeSort(int arr[], int left, int right) {

 if (left < right) {

 // Calculate the midpoint

 int mid = left + (right - left) / 2;

 // Sort first and second halves

 mergeSort(arr, left, mid);

 mergeSort(arr, mid + 1, right);

 // Merge the sorted halves

 merge(arr, left, mid, right);

 }

}

int main() {

 int arr[] = { 12, 11, 13, 5, 6, 7 };

 int n = sizeof(arr) / sizeof(arr[0]);

 // Sorting arr using mergesort

 mergeSort(arr, 0, n - 1);

 for (int i = 0; i < n; i++)

 printf("%d ", arr[i]);

 return 0;

}

Out Put:

Given array is

12 11 13 5 6 7

Sorted array is

5 6 7 11 12 13

Experiment No: 5

AIM: Write a Program to perform Binary Search for a given set integer values recursively and

non-recursively.

SOFTWARE/APPARATUSREQUIRED:- Turbo C, Personal Computer

Program:
#include <stdio.h>
#define MAX_LEN 10

/* Non-Recursive function*/
void b_search_nonrecursive(int l[],int num,int ele)
{
 int l1,i,j, flag = 0;
 l1 = 0;
 i = num-1;
 while(l1 <= i)
 {
 j = (l1+i)/2;
 if(l[j] == ele)
 {
 printf("\nThe element %d is present at position %d in list\n",ele,j);
 flag =1;
 break;
 }
 else
 if(l[j] < ele)
 l1 = j+1;

 else
 i = j-1;
 }
 if(flag == 0)
 printf("\nThe element %d is not present in the list\n",ele);
}

/* Recursive function*/
int b_search_recursive(int l[],int arrayStart,int arrayEnd,int a)
{
 int m,pos;
 if (arrayStart<=arrayEnd)
 {
 m=(arrayStart+arrayEnd)/2;
 if (l[m]==a)
 return m;
 else if (a<l[m])
 return b_search_recursive(l,arrayStart,m-1,a);
 else
 return b_search_recursive(l,m+1,arrayEnd,a);
 }
 return -1;
}

void read_list(int l[],int n)
{
 int i;
 printf("\nEnter the elements:\n");
 for(i=0;i<n;i++)
 scanf("%d",&l[i]);
}

void print_list(int l[],int n)
{
 int i;
 for(i=0;i<n;i++)
 printf("%d\t",l[i]);
}

/*main function*/
main()
{
 int l[MAX_LEN], num, ele,f,l1,a;
 int ch,pos;

 //clrscr();

 printf("==");
 printf("\n\t\t\tMENU");
 printf("\n===");

 printf("\n[1] Binary Search using Recursion method");
 printf("\n[2] Binary Search using Non-Recursion method");
 printf("\n\nEnter your Choice:");
 scanf("%d",&ch);

 if(ch<=2 & ch>0)
 {
 printf("\nEnter the number of elements : ");
 scanf("%d",&num);
 read_list(l,num);
 printf("\nElements present in the list are:\n\n");
 print_list(l,num);
 printf("\n\nEnter the element you want to search:\n\n");
 scanf("%d",&ele);

 switch(ch)
 {
 case 1:printf("\nRecursive method:\n");
 pos=b_search_recursive(l,0,num,ele);
 if(pos==-1)
 {
 printf("Element is not found");
 }
 else
 {
 printf("Element is found at %d position",pos);
 }
 //getch();
 break;

 case 2:printf("\nNon-Recursive method:\n");
 b_search_nonrecursive(l,num,ele);
 //getch();
 break;
 }
 }
//getch();

}

Out Put:

[1] Binary Search using Recursion method

[2] Binary Search using Non-Recursion method

Enter your Choice:1

Enter the number of elements : 5

Enter the elements:

12

22

32

42

52

Elements present in the list are:

12 22 32 42 52

Enter the element you want to search:

42

Recursive method:

Element is found at 3 position

Experiment No:6

AIM: Write a program to find solution for knapsack problem using greedy method

SOFTWARE/APPARATUSREQUIRED:- Turbo C, Personal Computer

Program:
#include<stdio.h>

int main()

{

 float weight[50],profit[50],ratio[50],Totalvalue,temp,capacity,amount;

 int n,i,j;

 printf("Enter the number of items :");

 scanf("%d",&n);

 for (i = 0; i < n; i++)

 {

 printf("Enter Weight and Profit for item[%d] :\n",i);

 scanf("%f %f", &weight[i], &profit[i]);

 }

 printf("Enter the capacity of knapsack :\n");

 scanf("%f",&capacity);

 for(i=0;i<n;i++)

 ratio[i]=profit[i]/weight[i];

 for (i = 0; i < n; i++)

 for (j = i + 1; j < n; j++)

 if (ratio[i] < ratio[j])

 {

 temp = ratio[j];

 ratio[j] = ratio[i];

 ratio[i] = temp;

 temp = weight[j];

 weight[j] = weight[i];

 weight[i] = temp;

 temp = profit[j];

 profit[j] = profit[i];

 profit[i] = temp;

 }

 printf("Knapsack problems using Greedy Algorithm:\n");

 for (i = 0; i < n; i++)

 {

 if (weight[i] > capacity)

 break;

 else

 {

 Totalvalue = Totalvalue + profit[i];

 capacity = capacity - weight[i];

 }

 }

 if (i < n)

 Totalvalue = Totalvalue + (ratio[i]*capacity);

 printf("\nThe maximum value is :%f\n",Totalvalue);

 return 0;

}

Out Put:

Enter the number of items :4

Enter Weight and Profit for item[0] :

2

12

Enter Weight and Profit for item[1] :

1

10

Enter Weight and Profit for item[2] :

3

20

Enter Weight and Profit for item[3] :

2

15

Enter the capacity of knapsack :

5

Knapsack problems using Greedy Algorithm:

The maximum value is :38.333332

Experiment No: 7

AIM: Write a program to find minimum cost spanning tree using Prim's Algorithm

SOFTWARE/APPARATUSREQUIRED:- Turbo C, Personal Computer

Program:

// A C++ program for Prim's Minimum

// Spanning Tree (MST) algorithm. The program is

// for adjacency matrix representation of the graph

#include <bits/stdc++.h>

using namespace std;

// Number of vertices in the graph

#define V 5

// A utility function to find the vertex with

// minimum key value, from the set of vertices

// not yet included in MST

int minKey(vector<int> &key, vector<bool> &mstSet) {

 // Initialize min value

 int min = INT_MAX, min_index;

 for (int v = 0; v < V; v++)

 if (mstSet[v] == false && key[v] < min)

 min = key[v], min_index = v;

 return min_index;

}

// A utility function to print the

// constructed MST stored in parent[]

void printMST(vector<int> &parent, vector<vector<int>> &graph) {

 cout << "Edge \tWeight\n";

 for (int i = 1; i < V; i++)

 cout << parent[i] << " - " << i << " \t"

 << graph[parent[i]][i] << " \n";

}

// Function to construct and print MST for

// a graph represented using adjacency

// matrix representation

void primMST(vector<vector<int>> &graph) {

 // Array to store constructed MST

 vector<int> parent(V);

 // Key values used to pick minimum weight edge in cut

 vector<int> key(V);

 // To represent set of vertices included in MST

 vector<bool> mstSet(V);

 // Initialize all keys as INFINITE

 for (int i = 0; i < V; i++)

 key[i] = INT_MAX, mstSet[i] = false;

 // Always include first 1st vertex in MST.

 // Make key 0 so that this vertex is picked as first

 // vertex.

 key[0] = 0;

 // First node is always root of MST

 parent[0] = -1;

 // The MST will have V vertices

 for (int count = 0; count < V - 1; count++) {

 // Pick the minimum key vertex from the

 // set of vertices not yet included in MST

 int u = minKey(key, mstSet);

 // Add the picked vertex to the MST Set

 mstSet[u] = true;

 // Update key value and parent index of

 // the adjacent vertices of the picked vertex.

 // Consider only those vertices which are not

 // yet included in MST

 for (int v = 0; v < V; v++)

 // graph[u][v] is non zero only for adjacent

 // vertices of m mstSet[v] is false for vertices

 // not yet included in MST Update the key only

 // if graph[u][v] is smaller than key[v]

 if (graph[u][v] && mstSet[v] == false

 && graph[u][v] < key[v])

 parent[v] = u, key[v] = graph[u][v];

 }

 // Print the constructed MST

 printMST(parent, graph);

}

// Driver's code

int main() {

 vector<vector<int>> graph = { { 0, 2, 0, 6, 0 },

 { 2, 0, 3, 8, 5 },

 { 0, 3, 0, 0, 7 },

 { 6, 8, 0, 0, 9 },

 { 0, 5, 7, 9, 0 } };

 // Print the solution

 primMST(graph);

 return 0;

}

 Out Put :

Edge Weight

0 - 1 2

1 - 2 3

0 - 3 6

1 - 4 5

Experiment No: 8

AIM: Write a program to find minimum cost spanning tree using Kruskal's Algorithm

SOFTWARE/APPARATUSREQUIRED:- Turbo C, Personal Computer

Program:

#include <stdio.h>

#include <stdlib.h>

const int inf = 999999;

int k, a, b, u, v, n, ne = 1;

int mincost = 0;

int cost[3][3] = {{0, 10, 20},{12, 0,15},{16, 18, 0}};

int p[9] = {0};

int applyfind(int i)

{

 while(p[i] != 0)

 i=p[i];

 return i;

}

int applyunion(int i,int j)

{

 if(i!=j) {

 p[j]=i;

 return 1;

 }

 return 0;

}

int main()

{

 n = 3;

 int i, j;

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 if (cost[i][j] == 0) {

 cost[i][j] = inf;

 }

 }

 }

 printf("Minimum Cost Spanning Tree: \n");

 while(ne < n) {

 int min_val = inf;

 for(i=0; i<n; i++) {

 for(j=0; j <n; j++) {

 if(cost[i][j] < min_val) {

 min_val = cost[i][j];

 a = u = i;

 b = v = j;

 }

 }

 }

 u = applyfind(u);

 v = applyfind(v);

 if(applyunion(u, v) != 0) {

 printf("%d -> %d\n", a, b);

 mincost +=min_val;

 }

 cost[a][b] = cost[b][a] = 999;

 ne++;

 }

 printf("Minimum cost = %d",mincost);

 return 0;

}

Out Put :

Minimum Cost Spanning Tree:

0 -> 1

1 -> 2

Minimum cost = 25

Experiment No: 9

AIM: Write a program to perform Single source shortest path problem for a given

SOFTWARE/APPARATUSREQUIRED:- Turbo C, Personal Computer

Program:

// C++ program for Dijkstra's single source shortest path

// algorithm. The program is for adjacency matrix

// representation of the graph

#include <iostream>

using namespace std;

#include <limits.h>

// Number of vertices in the graph

#define V 9

// A utility function to find the vertex with minimum

// distance value, from the set of vertices not yet included

// in shortest path tree

int minDistance(int dist[], bool sptSet[])

{

 // Initialize min value

 int min = INT_MAX, min_index;

 for (int v = 0; v < V; v++)

 if (sptSet[v] == false && dist[v] <= min)

 min = dist[v], min_index = v;

 return min_index;

}

// A utility function to print the constructed distance

// array

void printSolution(int dist[])

{

 cout << "Vertex \t Distance from Source" << endl;

 for (int i = 0; i < V; i++)

 cout << i << " \t\t\t\t" << dist[i] << endl;

}

// Function that implements Dijkstra's single source

// shortest path algorithm for a graph represented using

// adjacency matrix representation

void dijkstra(int graph[V][V], int src)

{

 int dist[V]; // The output array. dist[i] will hold the

 // shortest

 // distance from src to i

 bool sptSet[V]; // sptSet[i] will be true if vertex i is

 // included in shortest

 // path tree or shortest distance from src to i is

 // finalized

 // Initialize all distances as INFINITE and stpSet[] as

 // false

 for (int i = 0; i < V; i++)

 dist[i] = INT_MAX, sptSet[i] = false;

 // Distance of source vertex from itself is always 0

 dist[src] = 0;

 // Find shortest path for all vertices

 for (int count = 0; count < V - 1; count++) {

 // Pick the minimum distance vertex from the set of

 // vertices not yet processed. u is always equal to

 // src in the first iteration.

 int u = minDistance(dist, sptSet);

 // Mark the picked vertex as processed

 sptSet[u] = true;

 // Update dist value of the adjacent vertices of the

 // picked vertex.

 for (int v = 0; v < V; v++)

 // Update dist[v] only if is not in sptSet,

 // there is an edge from u to v, and total

 // weight of path from src to v through u is

 // smaller than current value of dist[v]

 if (!sptSet[v] && graph[u][v]

 && dist[u] != INT_MAX

 && dist[u] + graph[u][v] < dist[v])

 dist[v] = dist[u] + graph[u][v];

 }

 // print the constructed distance array

 printSolution(dist);

}

// driver's code

int main()

{

 /* Let us create the example graph discussed above */

 int graph[V][V] = { { 0, 4, 0, 0, 0, 0, 0, 8, 0 },

 { 4, 0, 8, 0, 0, 0, 0, 11, 0 },

 { 0, 8, 0, 7, 0, 4, 0, 0, 2 },

 { 0, 0, 7, 0, 9, 14, 0, 0, 0 },

 { 0, 0, 0, 9, 0, 10, 0, 0, 0 },

 { 0, 0, 4, 14, 10, 0, 2, 0, 0 },

 { 0, 0, 0, 0, 0, 2, 0, 1, 6 },

 { 8, 11, 0, 0, 0, 0, 1, 0, 7 },

 { 0, 0, 2, 0, 0, 0, 6, 7, 0 } };

 // Function call

 dijkstra(graph, 0);

 return 0;

}

// This code is contributed by shivanisinghss2110

Out Put:

Vertex Distance from Source

0 0

1 4

2 12

3 19

4 21

5 11

6 9

7 8

8 14

Experiment No: 10

AIM: Write a program to find solution for job sequencing with deadlines problem.

SOFTWARE/APPARATUSREQUIRED:- Turbo C, Personal Computer

Program:

 #include <algorithm> // For sort function

#include <iostream> // For input-output operations

using namespace std;

// Structure to represent a job with its id, deadline, and profit

struct Job {

 char id; // Job Id

 int dead; // Deadline of the job

 int profit; // Profit if the job is done before or on the deadline

};

// Comparison function to sort jobs based on descending order of profit

bool comparison(Job a, Job b) {

 return (a.profit > b.profit); // Return true if profit of job 'a' is greater than that of 'b'

}

// Function to schedule jobs for maximum profit

void printJobScheduling(Job arr[], int n) {

 // Step 1: Sort all jobs in descending order of profit

 sort(arr, arr + n, comparison); // Sort jobs using the comparison function

 // Step 2: Create an array to keep track of free time slots

 bool slot[n] = {false}; // Initially, all time slots are free (false)

 // Step 3: Create an array to store result of the job sequence

 char result[n] = {0}; // Result array will store the job ids scheduled

 // Step 4: Iterate through all given jobs

 for (int i = 0; i < n; i++) {

 // Check if the job can be scheduled before or on its deadline

 // We start checking from the last possible free slot before the deadline

 if(slot[arr[i].dead] == false) { // If the slot for this job's deadline is free

 result[i] = arr[i].id; // Assign the job id to the result

 slot[arr[i].dead] = true; // Mark this slot as filled

 }

 }

 // Step 5: Output the scheduled jobs (only those in valid slots)

 for (int i = 0; i < n; i++) {

 if (slot[arr[i].dead]) { // If the slot was filled

 if(result[i] != 0) // Check if the result has a valid job id

 cout << result[i] << " "; // Print the job id

 }

 }

 cout << endl;

}

int main() {

 // Array of jobs with id, deadline, and profit

 Job arr[] = { {'a', 2, 100},

 {'b', 1, 19},

 {'c', 2, 27},

 {'d', 1, 25},

 {'e', 3, 15} };

 // Number of jobs

 int n = sizeof(arr) / sizeof(arr[0]);

 // Print the result of the job scheduling

 cout << "Following is the maximum profit sequence of jobs:\n";

 printJobScheduling(arr, n);

 return 0;

}

// Code is contributed by Pratham Lashkari

Out Put:

Following is the maximum profit sequence of jobs:

a d e

Experiment No: 11

AIM: Write a program for all pairs shortest path problem

SOFTWARE/APPARATUSREQUIRED:- Turbo C, Personal Computer

Program:
#include<iostream>

#include<iomanip>

#define NODE 7

#define INF 999

using namespace std;

//Cost matrix of the graph

int costMat[NODE][NODE] = {

 {0, 3, 6, INF, INF, INF, INF},

 {3, 0, 2, 1, INF, INF, INF},

 {6, 2, 0, 1, 4, 2, INF},

 {INF, 1, 1, 0, 2, INF, 4},

 {INF, INF, 4, 2, 0, 2, 1},

 {INF, INF, 2, INF, 2, 0, 1},

 {INF, INF, INF, 4, 1, 1, 0}

};

void floydWarshal(){

 int cost[NODE][NODE]; //defind to store shortest distance from any node to

any node

 for(int i = 0; i<NODE; i++)

 for(int j = 0; j<NODE; j++)

 cost[i][j] = costMat[i][j]; //copy costMatrix to new matrix

 for(int k = 0; k<NODE; k++){

 for(int i = 0; i<NODE; i++)

 for(int j = 0; j<NODE; j++)

 if(cost[i][k]+cost[k][j] < cost[i][j])

 cost[i][j] = cost[i][k]+cost[k][j];

 }

 cout << "The matrix:" << endl;

 for(int i = 0; i<NODE; i++){

 for(int j = 0; j<NODE; j++)

 cout << setw(3) << cost[i][j];

 cout << endl;

 }

}

int main(){

 floydWarshal();

}

Out Put:

The matrix:

0 3 5 4 6 7 7

3 0 2 1 3 4 4

5 2 0 1 3 2 3

4 1 1 0 2 3 3

6 3 3 2 0 2 1

7 4 2 3 2 0 1

7 4 3 3 1 1 0

Basic Questions

1. What is Algorithm Analysis, and why is it important?
2. What are the characteristics of a good algorithm?
3. What is Asymptotic Notation? Explain Big O, Big Theta (Θ), and Big Omega (Ω).
4. What are Time Complexity and Space Complexity?
5. What is the difference between Worst-case, Best-case, and Average-case complexities?

Divide and Conquer

6. Explain the Divide and Conquer approach with examples.
7. How does Merge Sort work? What is its time complexity?
8. Explain the working of Quick Sort. Why is it preferred over Merge Sort in some cases?
9. What is the worst-case complexity of Quick Sort? How can it be avoided?
10. How does Binary Search work? What is its time complexity?

Greedy Algorithms

11. What is a Greedy Algorithm? Give an example.
12. Explain Huffman Coding and its application.
13. How does Kruskal’s Algorithm work for finding the Minimum Spanning Tree (MST)?
14. Explain Prim’s Algorithm and compare it with Kruskal’s Algorithm.
15. What is Dijkstra’s Algorithm, and where is it used?

Dynamic Programming

16. What is Dynamic Programming (DP)? How is it different from Divide and Conquer?
17. Explain the 0/1 Knapsack Problem using DP.
18. What is Floyd-Warshall Algorithm, and what problem does it solve?
19. How does the Longest Common Subsequence (LCS) problem work?
20. What is Memoization, and how does it improve efficiency?

Backtracking and Branch & Bound

21. What is Backtracking? Give an example.
22. Explain the N-Queens Problem and how it is solved using Backtracking.
23. What is Branch and Bound, and how does it differ from Backtracking?
24. How is Travelling Salesman Problem (TSP) solved using Branch and Bound?
25. What is the difference between Backtracking and Dynamic Programming?

Graph Algorithms

26. What are different ways to represent a Graph?
27. What is Topological Sorting, and where is it used?
28. How does Bellman-Ford Algorithm work, and how is it different from Dijkstra’s Algorithm?
29. What is the Strongly Connected Component (SCC) in a graph?
30. Explain Floyd-Warshall Algorithm for finding shortest paths.

NP-Completeness and Computational Complexity

31. What is P, NP, NP-Hard, and NP-Complete?
32. Explain why Travelling Salesman Problem (TSP) is NP-Complete.
33. What is Cook’s Theorem, and why is it important?
34. Can NP problems be solved in polynomial time?
35. What is an Approximation Algorithm, and why is it used?

Laboratory Experiment Evaluation Rubric

Category

Outstanding

(Up to

100%)

Accomplishe

d (Up to

75%)

Developing

(Up to 50%)

Beginner

(Up to 25%)

Written/Presentation/Demonstrati

on

The write-up

is clear, well-

organized,

and follows

the prescribed

format. All

required

sections (aim,

apparatus,

theory,

procedure,

diagram, etc.)

are present

and well-

written.

Demonstratio

n is clear and

thorough.

The report

follows the

specified

format, but

some sections

(like the

diagram or

theory) are

missing or

incomplete.

The

demonstration

is

understandabl

e but lacks

depth.

The report

includes most

sections but

lacks clarity,

coherence, or

completeness

in some parts

(e.g., diagram

missing,

unclear

theoretical

explanation).

The

demonstratio

n is

incomplete or

unclear.

The report is

poorly

written and

organized.

Many

sections are

missing or

incorrect

(e.g., no

diagram,

incomplete

procedure).

The

demonstratio

n lacks

clarity or is

missing.

Viva-Voice

Demonstrates

a deep

understanding

of the

experiment,

underlying

principles,

and

outcomes.

Answers

questions

confidently

and

accurately.

Demonstrates

a general

understanding

of the

experiment

and principles

but struggles

with some

aspects.

Provides

correct

answers to

most

questions.

Struggles

with some

fundamental

concepts and

principles.

Answering

questions

requires

additional

prompts, with

a few errors

in

understandin

g.

Lacks a basic

understandin

g of the

experiment.

Unable to

answer most

questions

accurately.

Demonstrate

s significant

gaps in

knowledge.

Category

Outstanding

(Up to

100%)

Accomplishe

d (Up to

75%)

Developing

(Up to 50%)

Beginner

(Up to 25%)

Performance/Report/File Work

Performs the

experiment

accurately

and

efficiently.

The report is

thorough,

with correct

observations,

calculations,

and analysis.

Data is

recorded

neatly and

with

appropriate

units. All

relevant

calculations

and

interpretation

s are

included.

Performs the

experiment

well with

minor errors

or delays. The

report is

complete but

may contain

some

inaccuracies

or missing

components

in

calculations

or

observations.

Completes

the

experiment

but with

notable

mistakes,

either in the

setup or the

data. The

report has

several

missing or

inaccurate

components,

including

incorrect or

incomplete

calculations.

Struggles to

perform the

experiment

correctly.

Significant

errors in

setup, data

collection,

and analysis.

The report is

poorly

structured

with major

inaccuracies

or missing

sections.

Attendance

Consistently

attends all lab

sessions,

actively

participates,

and engages

with the

experiment

and group

discussions.

Attends most

lab sessions

with

occasional

absences.

Participation

is generally

good but

lacks

consistency or

depth.

Attends some

lab sessions

but has

frequent

absences or

minimal

participation.

Misses

several lab

sessions and

shows

minimal to

no

participation

in class or

group

activities.

	Basic Questions
	Divide and Conquer
	Greedy Algorithms
	Dynamic Programming
	Backtracking and Branch & Bound
	Graph Algorithms
	NP-Completeness and Computational Complexity
	Laboratory Experiment Evaluation Rubric

