

VAISHNO COLLEGE OF ENGINEERING

Affliated to HPTU, Hamirpur and approved by AICTE

AI lab

Lab Manual

CSPC-414P (NEP Syllabus)

Department of Computer Science & Engineering

VillThapkour, PO Bhardoya, Tehsil Indora,Distt. Kangra (HP)-176403

Contact: 094183-18394, Web: www.vaishno.edu.in

Vision of Institute

To emerge as an institute of eminence in the fields of engineering, technology and management

in serving the industry and the nation by empowering students with a high degree of technical

managerial and practical competence.

Mission of Institute

M1 To strengthen the theoretical, practical and ethical dimensions of the learning process by

fostering a cultural of research and innovation among faculty members and students.

M2 To encourage long term interaction between academia and industry through the involvement

of industry for hands on implementation of the curriculum.

M3 To strengthen and molding students in professional ethical, social and environmental

dimensions by encouraging participation in co-curricular extracurricular and CSR activities.

Vision of the Department

To emerge as a department of eminence in computer science and engineering in serving the

industry and the nation by empowering students with high degree of technical and practical

competence.

Mission of the department

M1 To strengthen the theoretical and practical aspects of learning process by strongly

encouraging a

 computer cultural of research, innovation and hands on learning in computer science and

engineering

M2 To encourage long term interaction between the department and IT industry, through the involvement of

 IT industry for hands on implementation of course curriculum.

M3 To widen the awareness of students in professional, ethical, social and environmental dimensions by

encouraging their participation in co-curricular extracurricular and CSR activities.

Program Educational Objectives (PEOs) of the department

PEO 1: Engage in successful careers in industry, academia, and public service, by applying the

acquired knowledge of Science, Mathematics and Engineering, providing technical leadership

for their business, profession and community

PEO 2: Establish themselves as entrepreneur, work in research and development organization

and pursue higher education

PEO 3: Exhibit commitment and engage in lifelong learning for enhancing their professional

and personal capabilities.

PROGRAM OUTCOMES

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

PO2: Problem analysis: Identify, formulate, research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex engineering

activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able tocomprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

PO 12: Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcome (PSOs)

PSO1: Apply knowledge of mathematics, engineering sciences and multidisciplinary knowledge

to the solution of computer science engineering problems.

PSO2: Apply research-based knowledge, appropriate techniques, IT tools to complex computer

science engineering problems including design, analysis, interpretation of data, and synthesis of

the information to provide valid conclusions.

PSO3: Apply ethical principles engineering profession and recognize the need of independent

and lifelong learning for professional development and personnel growth.

Lab Syllabus & List of Experiments

CS-414P AI Lab

Teaching

Scheme

Credit Marks Distribution Duration

End

Semester

Examina

tion

L T P/D C Internal Assessment
End Semester

Examination
Total

0 0 2 1 Maximum Marks: 30 Maximum Marks: 20

50 2hrs

Minimum Marks: 12 Minimum Marks: 08 20

Following is the list of experiments/ jobs. Minimum 08 number of practicals are to be performed from

following list. The additional experiments may be performed by the respective institution depending on

the infrastructure available.

Laboratory Work:

1. Write a program to implement breadth first search algorithm.

2. Write a program to implement depth first search algorithm.

3. Write a program to implement the Hill climbing algorithm

4. Write a program to build and display Neural network using Tenser flow keres.

5. Write a program to implement Genetic algorithm.

6. Study of expert system tools and applications.

7. Write a program to implement Traveling salesman problem.

8. Write a program to implement four queen problem.

9. Write a program to solve monkey banana problem.

10. Write a program to implement Tower of Hanoi.

Evaluation Scheme

Internal Assessment: 30 marks (pass marks:12)

Distribution of marks for internal assessment:

 Written/presentation/Demonstration: 05

 Viva-voice: 05

 Teacher assessment: Lab Work performance/Report/File Work:15

 Attendance: 05

External Assessment: 20 marks (pass marks: 08)

Total marks 30+20=50, Pass marks = 20

Note: Student has to pass internal & external assessment separately.

GENERAL GUIDELINES AND SAFETY INSTRUCTIONS

1. You may use the computers in the lab only when a teacher is present.

2. Please place your bags at the front of the lab.

3. Do not eat or drink in the lab.

4. Keep the lab clean and neat at all times.

5. Use only the computer you are assigned to.

6. Report any hardware fault immediately to your teacher. Never attempt to dismantle the

different parts of the computer.

7. Each student must log in to his/her account. No sharing of accounts is permitted.

8. The computers are for your academic use. Playing computer games for entertainment is

strictly not allowed.

9. Shut down the computer properly after use.

10. Do not charge your personal mobile devices in the lab.

Cleanliness

 Keep your workspace clean and free of clutter

 Don't eat or drink in the lab

 Don't litter

 Don't remove cables or items from the lab

Fire safety

 Have a fire extinguisher and first-aid kit available

 Follow fire safety guidelines

 Be aware of the possibility of an accidental fire

 Know how to react to a fire

 Have a planned fire escape route

Eye and body safety

 Avoid eye fatigue by blinking often or closing your eyes for a few minutes

 Sit straight and in a comfortable posture

 Spread your fingers apart or rotate your wrists at regular intervals

 Wear proper lab attire

 Practice good hygiene

Other safety guidelines

 Don't spill liquids on the computer

 Don't touch hot or high voltage areas of printers

 Don't open a power supply or CRT monitor

 Don't tamper with wires or network cables

 Don't use illegal software

 Don't attempt to compromise network security

 Practical No: 1

Aim:- Write a program to implement breadth first search algorithm.

Software Used:- Visual Studio Code

#include <iostream>

#include <queue>

#include <vector>

using namespace std;

// BFS from given source s

void bfs(vector<vector<int>>& adj, int s)

{

 // Create a queue for BFS

 queue<int> q;

 // Initially mark all the vertices as not visited

 // When we push a vertex into the q, we mark it as

 // visited

 vector<bool> visited(adj.size(), false);

 // Mark the source node as visited and

 // enqueue it

 visited[s] = true;

 q.push(s);

 // Iterate over the queue

 while (!q.empty()) {

 // Dequeue a vertex from queue and print it

 int curr = q.front();

 q.pop();

 cout << curr << " ";

 // Get all adjacent vertices of the dequeued

 // vertex curr If an adjacent has not been

 // visited, mark it visited and enqueue it

 for (int x : adj[curr]) {

 if (!visited[x]) {

 visited[x] = true;

 q.push(x);

 }

 }

 }

}

// Function to add an edge to the graph

void addEdge(vector<vector<int>>& adj,

 int u, int v)

{

 adj[u].push_back(v);

 adj[v].push_back(u); // Undirected Graph

}

int main()

{

 // Number of vertices in the graph

 int V = 5;

 // Adjacency list representation of the graph

 vector<vector<int>> adj(V);

 // Add edges to the graph

 addEdge(adj, 0, 1);

 addEdge(adj, 0, 2);

 addEdge(adj, 1, 3);

 addEdge(adj, 1, 4);

 addEdge(adj, 2, 4);

 // Perform BFS traversal starting from vertex 0

 cout << "BFS starting from 0 : \n";

 bfs(adj, 0);

 return 0;

}

 Practical No: 2

Aim:- Write a program to implement depth first search algorithm.

Software Used:- Visual Studio Code

#include <bits/stdc++.h>

using namespace std;

// Recursive function for DFS traversal

void DFSRec(vector<vector<int>> &adj, vector<bool> &visited, int s){

 visited[s] = true;

 // Print the current vertex

 cout << s << " ";

 // Recursively visit all adjacent vertices

 // that are not visited yet

 for (int i : adj[s])

 if (visited[i] == false)

 DFSRec(adj, visited, i);

}

// Main DFS function that initializes the visited array

// and call DFSRec

void DFS(vector<vector<int>> &adj, int s){

 vector<bool> visited(adj.size(), false);

 DFSRec(adj, visited, s);

}

// To add an edge in an undirected graph

void addEdge(vector<vector<int>> &adj, int s, int t){

 adj[s].push_back(t);

 adj[t].push_back(s);

}

int main(){

 int V = 5;

 vector<vector<int>> adj(V);

 // Add edges

 vector<vector<int>> edges={{1, 2},{1, 0},{2, 0},{2, 3},{2, 4}};

 for (auto &e : edges)

 addEdge(adj, e[0], e[1]);

 int s = 1; // Starting vertex for DFS

 cout << "DFS from source: " << s << endl;

 DFS(adj, s); // Perform DFS starting from the source vertex

 return 0;

}

 Practical No: 3

Aim:- Write a program to implement Genetic algorithm.

Software Used:- Visual Studio Code

#include <iostream>

#include <vector>

#include <algorithm>

#include <cstdlib>

#include <ctime>

using namespace std;

#define POP_SIZE 6 // Population size

#define CHROMO_LENGTH 5 // Length of binary chromosome

#define GENERATIONS 10 // Number of generations

#define MUTATION_RATE 0.1 // Mutation probability

// Function to evaluate fitness: f(x) = x^2

int fitness(int x) {

 return x * x;

}

// Convert binary chromosome to integer

int binaryToDecimal(vector<int>& chromo) {

 int value = 0;

 for (int bit : chromo) {

 value = (value << 1) | bit;

 }

 return value;

}

// Generate random chromosome

vector<int> generateChromosome() {

 vector<int> chromo(CHROMO_LENGTH);

 for (int i = 0; i < CHROMO_LENGTH; i++) {

 chromo[i] = rand() % 2;

 }

 return chromo;

}

// Perform single-point crossover

pair<vector<int>, vector<int>> crossover(vector<int>& parent1, vector<int>& parent2) {

 int point = rand() % (CHROMO_LENGTH - 1) + 1; // Avoid 0 or full swap

 vector<int> child1 = parent1;

 vector<int> child2 = parent2;

 for (int i = point; i < CHROMO_LENGTH; i++) {

 swap(child1[i], child2[i]);

 }

 return {child1, child2};

}

// Perform mutation

void mutate(vector<int>& chromo) {

 for (int i = 0; i < CHROMO_LENGTH; i++) {

 if ((rand() % 100) < (MUTATION_RATE * 100)) {

 chromo[i] = !chromo[i];

 }

 }

}

int main() {

 srand(time(0));

 vector<vector<int>> population(POP_SIZE);

 // Initialize population

 for (int i = 0; i < POP_SIZE; i++) {

 population[i] = generateChromosome();

 }

 for (int gen = 0; gen < GENERATIONS; gen++) {

 // Evaluate fitness

 vector<pair<int, vector<int>>> fitnessVals;

 for (auto& chromo : population) {

 int value = binaryToDecimal(chromo);

 fitnessVals.push_back({fitness(value), chromo});

 }

 // Sort by fitness (descending order)

 sort(fitnessVals.rbegin(), fitnessVals.rend());

 // Print best individual of the generation

 cout << "Generation " << gen << " Best: " << binaryToDecimal(fitnessVals[0].second) << "

Fitness: " << fitnessVals[0].first << endl;

 // Select top individuals for reproduction

 vector<vector<int>> new_population;

 for (int i = 0; i < POP_SIZE / 2; i++) {

 auto[parent1, parent2] = crossover(fitnessVals[i].second, fitnessVals[i + 1].second);

 mutate(parent1);

 mutate(parent2);

 new_population.push_back(parent1);

 new_population.push_back(parent2);

 }

 population = new_population;

 }

 return 0;

}

 Practical No: 4

Aim:- Study of expert system tools and applications.

Software Used:- Visual Studio Code

1. Introduction to Expert Systems

An Expert System (ES) is an artificial intelligence-based computer system that mimics human

decision-making capabilities by using knowledge and inference rules. These systems are widely

used in problem-solving and decision-making tasks in various domains such as medicine,

engineering, business, and more.

2. Components of an Expert System

1. Knowledge Base: Contains facts and heuristics (rules) to solve specific problems.
2. Inference Engine: Applies logical rules to the knowledge base to derive conclusions.
3. User Interface: Allows users to interact with the system.
4. Explanation Module: Provides explanations for decisions made by the system.
5. Knowledge Acquisition Module: Facilitates updating and refining the knowledge base.

3. Expert System Tools

Expert system tools are software frameworks used to develop expert systems. These tools

provide environments for knowledge representation, reasoning, and decision-making.

A. Common Expert System Development Tools

1. CLIPS (C Language Integrated Production System)
o Developed by NASA.
o Efficient for rule-based expert systems.
o Supports forward and backward chaining.

2. Prolog (Programming in Logic)
o A logic-based programming language.
o Used in AI applications requiring symbolic reasoning.

3. MYCIN
o One of the earliest medical expert systems.

 Practical No: 5

 Aim:- Write a program to implement Traveling salesman problem.

Software Used:- Visual Studio Code

#include <iostream>

#include <vector>

#include <climits>

using namespace std;

#define N 4 // Number of cities

// Distance matrix representing the cost between cities

int dist[N][N] = {

 {0, 10, 15, 20},

 {10, 0, 35, 25},

 {15, 35, 0, 30},

 {20, 25, 30, 0}

};

bool visited[N];

int minCost = INT_MAX;

// Function to find the shortest path using backtracking

void tsp(int currentPos, int count, int cost, int start) {

 if (count == N && dist[currentPos][start]) { // If all cities visited

 minCost = min(minCost, cost + dist[currentPos][start]);

 return;

 }

 for (int i = 0; i < N; i++) {

 if (!visited[i] && dist[currentPos][i]) {

 visited[i] = true;

 tsp(i, count + 1, cost + dist[currentPos][i], start);

 visited[i] = false; // Backtrack

 }

 }

}

int main() {

 for (int i = 0; i < N; i++) visited[i] = false;

 visited[0] = true; // Start from the first city

 tsp(0, 1, 0, 0);

 cout << "The minimum cost of the TSP tour is: " << minCost << endl;

 return 0;

}

 Practical No: 6

Aim:- Write a program to implement four queen problem.

Software Used:- Visual Studio Code

#include <iostream>
using namespace std;

#define N 4

// Function to print the solution
void printSolution(int board[N][N]) {
 for (int i = 0; i < N; i++) {
 for (int j = 0; j < N; j++) {
 cout << (board[i][j] ? "Q " : "- ");
 }
 cout << endl;
 }
 cout << endl;
}

// Function to check if a queen can be placed at board[row][col]
bool isSafe(int board[N][N], int row, int col) {
 for (int i = 0; i < col; i++) // Check left side
 if (board[row][i]) return false;

 for (int i = row, j = col; i >= 0 && j >= 0; i--, j--) // Check upper diagonal
 if (board[i][j]) return false;

 for (int i = row, j = col; i < N && j >= 0; i++, j--) // Check lower diagonal
 if (board[i][j]) return false;

 return true;
}

// Recursive function to solve the Four Queen problem
bool solveNQueens(int board[N][N], int col) {
 if (col >= N) { // All queens placed
 printSolution(board);
 return true; // Can be modified to return false if only one solution is needed
 }

 bool res = false;
 for (int i = 0; i < N; i++) {
 if (isSafe(board, i, col)) {
 board[i][col] = 1; // Place the queen
 res = solveNQueens(board, col + 1) || res;
 board[i][col] = 0; // Backtrack
 }

 }
 return res;
}

// Driver function
int main() {
 int board[N][N] = {0};
 if (!solveNQueens(board, 0)) {
 cout << "No solution exists" << endl;
 }
 return 0;
}

 Practical No: 7

Aim:- Write a program to solve monkey banana problem.

Software Used:- Visual Studio Code

#include <iostream>

#include <queue>

#include <unordered_set>

using namespace std;

struct State {

 int monkey_pos;

 bool has_box;

 bool on_box;

 bool has_banana;

 bool operator==(const State& other) const {

 return monkey_pos == other.monkey_pos && has_box == other.has_box &&

 on_box == other.on_box && has_banana == other.has_banana;

 }

};

// Custom hash function for State

namespace std {

 template <>

 struct hash<State> {

 size_t operator()(const State& s) const {

 return hash<int>()(s.monkey_pos) ^ hash<bool>()(s.has_box) ^

 hash<bool>()(s.on_box) ^ hash<bool>()(s.has_banana);

 }

 };

}

// Function to check if the monkey has reached the banana

bool isGoalState(const State& state) {

 return state.has_banana;

}

// Function to perform BFS to find the solution

void solveMonkeyBanana() {

 queue<State> q;

 unordered_set<State> visited;

 State initial = {0, false, false, false};

 q.push(initial);

 visited.insert(initial);

 while (!q.empty()) {

 State current = q.front();

 q.pop();

 if (isGoalState(current)) {

 cout << "Monkey has obtained the banana!" << endl;

 return;

 }

 // Possible actions

 if (!current.has_box) {

 State next = current;

 next.has_box = true;

 if (visited.find(next) == visited.end()) {

 q.push(next);

 visited.insert(next);

 }

 }

 if (current.has_box && !current.on_box) {

 State next = current;

 next.on_box = true;

 if (visited.find(next) == visited.end()) {

 q.push(next);

 visited.insert(next);

 }

 }

 if (current.on_box) {

 State next = current;

 next.has_banana = true;

 if (visited.find(next) == visited.end()) {

 q.push(next);

 visited.insert(next);

 }

 }

 }

 cout << "No solution found!" << endl;

}

int main() {

 solveMonkeyBanana();

 return 0;

}

 Practical No: 8

Aim:- Write a program to implement Tower of Hanoi.

Software Used:- Visual Studio Code

#include <iostream>
using namespace std;

// Function to solve the Tower of Hanoi problem
void towerOfHanoi(int n, char source, char auxiliary, char destination) {
 if (n == 1) {
 cout << "Move disk 1 from " << source << " to " << destination << endl;
 return;
 }
 towerOfHanoi(n - 1, source, destination, auxiliary);
 cout << "Move disk " << n << " from " << source << " to " << destination << endl;
 towerOfHanoi(n - 1, auxiliary, source, destination);
}

int main() {
 int n;
 cout << "Enter the number of disks: ";
 cin >> n;
 towerOfHanoi(n, 'A', 'B', 'C');
 return 0;
}

 Viva Questions

1. What do you mean by AI.

2. Breadth first search & depth first search.

3. What are heuristics search techniques.

4. What do you mean by intelligent systems.

5. What do you mean by cybernetics & brain simulation.

6. What are the impact of AI on jobs & society.

7. What do you mean by machine learning.

8. Applications of Machine learning.

9. What do you mean by data normalization.

10. What do you mean by Artificial neural network.

11. What do you mean by Activation functions

12. What do you mean by perceptron.

13. What do you mean by fuzzy logic.

14. What do by mean by Genetic algorithm.

15. What do you mean by mutation & off spring.

 Laboratory Experiment Evaluation Rubric

Category

Outstanding

(Up to

100%)

Accomplishe

d (Up to

75%)

Developing

(Up to 50%)

Beginner

(Up to 25%)

Written/Presentation/Demonstrati

on

The write-up

is clear, well-

organized,

and follows

the prescribed

format. All

required

sections (aim,

apparatus,

theory,

procedure,

diagram, etc.)

are present

and well-

written.

Demonstratio

n is clear and

thorough.

The report

follows the

specified

format, but

some sections

(like the

diagram or

theory) are

missing or

incomplete.

The

demonstration

is

understandabl

e but lacks

depth.

The report

includes most

sections but

lacks clarity,

coherence, or

completeness

in some parts

(e.g., diagram

missing,

unclear

theoretical

explanation).

The

demonstratio

n is

incomplete or

unclear.

The report is

poorly

written and

organized.

Many

sections are

missing or

incorrect

(e.g., no

diagram,

incomplete

procedure).

The

demonstratio

n lacks

clarity or is

missing.

Viva-Voice

Demonstrates

a deep

understanding

of the

experiment,

underlying

principles,

and

outcomes.

Answers

questions

confidently

and

Demonstrates

a general

understanding

of the

experiment

and principles

but struggles

with some

aspects.

Provides

correct

answers to

most

Struggles

with some

fundamental

concepts and

principles.

Answering

questions

requires

additional

prompts, with

a few errors

in

understandin

Lacks a basic

understandin

g of the

experiment.

Unable to

answer most

questions

accurately.

Demonstrate

s significant

gaps in

knowledge.

Category

Outstanding

(Up to

100%)

Accomplishe

d (Up to

75%)

Developing

(Up to 50%)

Beginner

(Up to 25%)

accurately. questions. g.

Performance/Report/File Work

Performs the

experiment

accurately

and

efficiently.

The report is

thorough,

with correct

observations,

calculations,

and analysis.

Data is

recorded

neatly and

with

appropriate

units. All

relevant

calculations

and

interpretation

s are

included.

Performs the

experiment

well with

minor errors

or delays. The

report is

complete but

may contain

some

inaccuracies

or missing

components

in

calculations

or

observations.

Completes

the

experiment

but with

notable

mistakes,

either in the

setup or the

data. The

report has

several

missing or

inaccurate

components,

including

incorrect or

incomplete

calculations.

Struggles to

perform the

experiment

correctly.

Significant

errors in

setup, data

collection,

and analysis.

The report is

poorly

structured

with major

inaccuracies

or missing

sections.

Attendance

Consistently

attends all lab

sessions,

actively

participates,

and engages

with the

experiment

and group

discussions.

Attends most

lab sessions

with

occasional

absences.

Participation

is generally

good but

lacks

consistency or

Attends some

lab sessions

but has

frequent

absences or

minimal

participation.

Misses

several lab

sessions and

shows

minimal to

no

participation

in class or

group

activities.

Category

Outstanding

(Up to

100%)

Accomplishe

d (Up to

75%)

Developing

(Up to 50%)

Beginner

(Up to 25%)

depth.

	1. Introduction to Expert Systems
	2. Components of an Expert System
	3. Expert System Tools
	A. Common Expert System Development Tools

	Laboratory Experiment Evaluation Rubric

